Generalized Levi Factor Actions on the Lie Algebra of an Algebraic Group
نویسندگان
چکیده
منابع مشابه
The Generalized Cayley Map from an Algebraic Group to Its Lie Algebra
Each infinitesimally faithful representation of a reductive complex connected algebraic group G induces a dominant morphism Φ from the group to its Lie algebra g by orthogonal projection in the endomorphism ring of the representation space. The map Φ identifies the field Q(G) of rational functions on G with an algebraic extension of the field Q(g) of rational functions on g. For the spin repres...
متن کاملOn dimensions of derived algebra and central factor of a Lie algebra
Some Lie algebra analogues of Schur's theorem and its converses are presented. As a result, it is shown that for a capable Lie algebra L we always have dim L=Z(L) 2(dim(L2))2. We also give give some examples sup- porting our results.
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولFrom Lie Algebras of Vector Fields to Algebraic Group Actions
From the action of an affine algebraic group G on an algebraic variety V , one can construct a representation of its Lie algebra L(G) by derivations on the sheaf of regular functions on V . Conversely, if one has a finite-dimensional Lie algebra L and a homomorphism ρ : L → DerK(K[U ]) for an affine algebraic variety U , one may wonder whether it comes from an algebraic group action on U or on ...
متن کاملLie group actions on compact
Let G be a homotopically trivial and effective compact Lie group action on a compact manifold N of nonpositive curvature. Under certain assumptions on N we prove that if G has dimension equal to rank of Center π1(N), then G must be connected. Furthermore, if on N there exists a point having negative definite Ricci tensor, then we show that G is the trivial group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1997
ISSN: 0021-8693
DOI: 10.1006/jabr.1997.7086